[TOC]
To use your own dataset in TensorFlow Object Detection API, you must convert it into the TFRecord file format. This document outlines how to write a script to generate the TFRecord file.
Each dataset is required to have a label map associated with it. This label map
defines a mapping from string class names to integer class Ids. The label map
should be a StringIntLabelMap
text protobuf. Sample label maps can be found in
object_detection/data. Label maps should always start from id 1.
For every example in your dataset, you should have the following information:
Consider the following image:
with the following label map:
item {
id: 1
name: 'Cat'
}
item {
id: 2
name: 'Dog'
}
We can generate a tf.Example proto for this image using the following code:
def create_cat_tf_example(encoded_cat_image_data):
"""Creates a tf.Example proto from sample cat image.
Args:
encoded_cat_image_data: The jpg encoded data of the cat image.
Returns:
example: The created tf.Example.
"""
height = 1032.0
width = 1200.0
filename = 'example_cat.jpg'
image_format = b'jpg'
xmins = [322.0 / 1200.0]
xmaxs = [1062.0 / 1200.0]
ymins = [174.0 / 1032.0]
ymaxs = [761.0 / 1032.0]
classes_text = ['Cat']
classes = [1]
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(encoded_image_data),
'image/format': dataset_util.bytes_feature(image_format),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
}))
return tf_example
A typical conversion script will look like the following:
import tensorflow as tf
from object_detection.utils import dataset_util
flags = tf.app.flags
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
FLAGS = flags.FLAGS
def create_tf_example(example):
# TODO(user): Populate the following variables from your example.
height = None # Image height
width = None # Image width
filename = None # Filename of the image. Empty if image is not from file
encoded_image_data = None # Encoded image bytes
image_format = None # b'jpeg' or b'png'
xmins = [] # List of normalized left x coordinates in bounding box (1 per box)
xmaxs = [] # List of normalized right x coordinates in bounding box
# (1 per box)
ymins = [] # List of normalized top y coordinates in bounding box (1 per box)
ymaxs = [] # List of normalized bottom y coordinates in bounding box
# (1 per box)
classes_text = [] # List of string class name of bounding box (1 per box)
classes = [] # List of integer class id of bounding box (1 per box)
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(encoded_image_data),
'image/format': dataset_util.bytes_feature(image_format),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
}))
return tf_example
def main(_):
writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
# TODO(user): Write code to read in your dataset to examples variable
for example in examples:
tf_example = create_tf_example(example)
writer.write(tf_example.SerializeToString())
writer.close()
if __name__ == '__main__':
tf.app.run()
Note: You may notice additional fields in some other datasets. They are currently unused by the API and are optional.
Note: Please refer to the section on Running an Instance Segmentation Model for instructions on how to configure a model that predicts masks in addition to object bounding boxes.
When you have more than a few thousand examples, it is beneficial to shard your dataset into multiple files:
Instead of writing all tf.Example protos to a single file as shown in conversion script outline, use the snippet below.
import contextlib2
from object_detection.dataset_tools import tf_record_creation_util
num_shards=10
output_filebase='/path/to/train_dataset.record'
with contextlib2.ExitStack() as tf_record_close_stack:
output_tfrecords = tf_record_creation_util.open_sharded_output_tfrecords(
tf_record_close_stack, output_filebase, num_shards)
for index, example in examples:
tf_example = create_tf_example(example)
output_shard_index = index % num_shards
output_tfrecords[output_shard_index].write(tf_example.SerializeToString())
This will produce the following output files
/path/to/train_dataset.record-00000-00010
/path/to/train_dataset.record-00001-00010
...
/path/to/train_dataset.record-00009-00010
which can then be used in the config file as below.
tf_record_input_reader {
input_path: "/path/to/train_dataset.record-?????-of-00010"
}