The TF-NLP library provides a collection of scripts for training and evaluating transformer-based models, on various tasks such as sentence classification, question answering, and translation. Additionally, we provide checkpoints of pretrained models which can be finetuned on downstream tasks.
⚠️ Disclaimer: Checkpoints are based on training with publicly available datasets. Some datasets contain limitations, including non-commercial use limitations. Please review the terms and conditions made available by third parties before using the datasets provided. Checkpoints are licensed under Apache 2.0.
⚠️ Disclaimer: Datasets hyperlinked from this page are not owned or distributed by Google. Such datasets are made available by third parties. Please review the terms and conditions made available by the third parties before using the data.
Model Garden can be easily installed with
pip install tf-models-nightly
. After installation, check out
this instruction
on how to train models with this codebase.
By default, the experiment runs on GPUs. To run on TPUs, one should overwrite
runtime.distribution_strategy
and set the tpu address. See RuntimeConfig for details.
In general, the experiments can run with the following command by setting the
corresponding ${TASK}
, ${TASK_CONFIG}
, ${MODEL_CONFIG}
.
EXPERIMENT=???
TASK_CONFIG=???
MODEL_CONFIG=???
EXRTRA_PARAMS=???
MODEL_DIR=??? # a-folder-to-hold-checkpoints-and-logs
python3 train.py \
--experiment=${EXPERIMENT} \
--mode=train_and_eval \
--model_dir=${MODEL_DIR} \
--config_file=${TASK_CONFIG} \
--config_file=${MODEL_CONFIG} \
--params_override=${EXRTRA_PARAMS}
EXPERIMENT
can be found under configs/
TASK_CONFIG
can be found under configs/experiments/
MODEL_CONFIG
can be found under configs/models/
train.py
looks up the registered ExperimentConfig
with ${EXPERIMENT}
TaskConfig
in ${TASK_CONFIG}
model
in TaskConfig
with ${MODEL_CONFIG}
ExperimentConfig
with ${EXTRA_PARAMS}
Note that
${TASK_CONFIG}
, ${MODEL_CONFIG}
, ${EXTRA_PARAMS}
can be optional when EXPERIMENT default is enough.${TASK_CONFIG}
, ${MODEL_CONFIG}
, ${EXTRA_PARAMS}
are only guaranteed to be compatible to it’s ${EXPERIMENT}
that defines it.NAME | EXPERIMENT | TASK_CONFIG | MODEL_CONFIG | EXRTRA_PARAMS |
---|---|---|---|---|
BERT-base GLUE/MNLI-matched finetune | bert/sentence_prediction | glue_mnli_matched.yaml | bert_en_uncased_base.yaml | <summary>data and bert-base hub init</summary>task.train_data.input_path=/path-to-your-training-data,task.validation_data.input_path=/path-to-your-val-data,task.hub_module_url=https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4 |
BERT-base GLUE/MNLI-matched finetune | bert/sentence_prediction | glue_mnli_matched.yaml | bert_en_uncased_base.yaml | <summary>data and bert-base ckpt init</summary>task.train_data.input_path=/path-to-your-training-data,task.validation_data.input_path=/path-to-your-val-data,task.init_checkpoint=gs://tf_model_garden/nlp/bert/uncased_L-12_H-768_A-12/bert_model.ckpt |
BERT-base SQuAD v1.1 finetune | bert/squad | squad_v1.yaml | bert_en_uncased_base.yaml | <summary>data and bert-base hub init</summary>task.train_data.input_path=/path-to-your-training-data,task.validation_data.input_path=/path-to-your-val-data,task.hub_module_url=https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4 |
ALBERT-base SQuAD v1.1 finetune | bert/squad | squad_v1.yaml | albert_base.yaml | <summary>data and albert-base hub init</summary>task.train_data.input_path=/path-to-your-training-data,task.validation_data.input_path=/path-to-your-val-data,task.hub_module_url=https://tfhub.dev/tensorflow/albert_en_base/3 |
Transformer-large WMT14/en-de scratch | wmt_transformer/large | <summary>ende-32k sentencepiece</summary>task.sentencepiece_model_path=’gs://tf_model_garden/nlp/transformer_wmt/ende_bpe_32k.model’ |